{% extends "base.html" %} {% block title %} getGaussianKernel {% endblock %} {% block description %}
Computes and returns the ksize x 1 matrix of Gaussian filter coefficients.
cv2.getGaussianKernel(ksize, sigma[, ktype]) → retval{% endblock %} {% block parameters %}
ksize as sigma = 0.3*(0.5*(ksize – 1)-1)+0.8 .cv2.CV_*): Type of filter coefficients. May be cv2.CV_32F or cv2.CV_64F (default).sepFilter2D() or to createSeparableLinearFilter(). Those functions automatically recognize smoothing kernels (symmetrical kernels with sum of weights equal to 1) and handle them accordingly. GaussianBlur().This function computes and returns the ksize x 1 matrix of Gaussian filter coefficients:
\[G_i\ =\ \alpha\ *\ e^\frac{-\left(i-(ksize-1))/2\right)^2}{2*{\rm sigma}^2}\]Where \(i= 0…ksize-1\) and \(\alpha\) is the scaling factor so that \(\sum_{i} G_i=1 \).
{% endblock %} {% block references %} {% endblock %}