Source code for WORC.classification.AdvancedSampler
#!/usr/bin/env python
# Copyright 2016-2020 Biomedical Imaging Group Rotterdam, Departments of
# Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from sklearn.utils import check_random_state
import numpy as np
import six
import scipy
from scipy.stats import uniform
import math
[docs]
class log_uniform():
[docs]
def __init__(self, loc=-1, scale=0, base=10):
self.loc = loc
self.scale = scale
self.base = base
self.uniform_dist = uniform(loc=self.loc, scale=self.scale)
[docs]
def rvs(self, size=None, random_state=None):
if size is None:
return np.power(self.base, self.uniform_dist.rvs(random_state=random_state))
else:
return np.power(self.base, self.uniform_dist.rvs(size=size, random_state=random_state))
[docs]
class discrete_uniform():
[docs]
def __init__(self, loc=-1, scale=0):
self.loc = loc
self.scale = scale
self.uniform_dist = uniform(loc=self.loc, scale=self.scale)
[docs]
def rvs(self, size=None, random_state=None):
if size is None:
return int(self.uniform_dist.rvs(random_state=random_state))
else:
return int(self.uniform_dist.rvs(size=size, random_state=random_state))
[docs]
class boolean_uniform():
'''
Uniform distribution thresholded at a certain value to output booleans.
Note: as Booleans cannot be saved in JSOn, which WORC later does, this
object returns strings.
'''
[docs]
def __init__(self, loc=0, scale=1, threshold=0.5):
self.loc = loc
self.scale = scale
self.threshold = threshold
self.uniform_dist = uniform(loc=self.loc, scale=self.scale)
[docs]
def rvs(self, size=None, random_state=None):
if size is None:
return str(self.uniform_dist.rvs(random_state=random_state) < self.threshold)
else:
return str([k < self.threshold for k in self.uniform_dist.rvs(size=size, random_state=random_state)])
[docs]
class exp_uniform():
[docs]
def __init__(self, loc=-1, scale=0, base=math.e):
self.loc = loc
self.scale = scale
self.base = base
[docs]
def rvs(self, size=None, random_state=None):
uniform_dist = uniform(loc=self.loc, scale=self.scale)
if size is None:
return np.power(self.base, uniform_dist .rvs(random_state=random_state))
else:
return np.power(self.base, uniform_dist .rvs(size=size, random_state=random_state))